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Non-linear thermomagnetic effects due to the arbitrary 
drag of electrons and phonons near the acoustic 
instability threshold 
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Institute of Physics, Academy of Sciences of the Azerbaijan SSR, Baku, USSR 

Received 14 March 1989, in final form 24 July 1989 

Abstract. The thermopower and the transverse Nernst-Ettingshausen (NE) effect are studied 
in impurity semiconductorsand semimetal sexposed to external electric Eandnon-quantising 
magnetic H fields in the presence of a lattice temperature gradient with due regard of the 
non-diffusion approximation for the acoustic phonons. In the absence of electron and phonon 
heating, the thermal and mutual drags are taken into account. It is shown that in the non- 
diffusion approximation, in contrast to the diffusion one, the thermal and mutual drags lead 
to a non-linear current E dependence without electrons and phonons being heated (‘non- 
heated non-linearity’). This leads to the E and H dependence of the thermopower and NE 
coefficient. 

1. Introduction 

In an earlier publication [l] it has been shown that in piezosemiconductors, placed in an 
external electric field, ultrasound introduced externally into the crystal is amplied by the 
drift of current carriers. Thermal noise, i.e. the intrinsic phonons of the crystal, is also 
amplified along with the externally introduced phonons. Then, in another study [2] 
amplification of ultrasound has been obtained in Ge, i.e. in a crystal with deformation- 
type interaction, whereas in [3] a saturation of current in piezoelectric semiconductors 
has been observed. 

Esaki [4] obtained generation of phonons in bismuth in crossed electric E and 
quantising magneticHfields. He has shown that the current-voltage characteristic (cvc) 
of Bi has an upward break at a certain critical electric field E,,, which corresponds to the 
electron drift velocity U ,  equal to the average sound velocity s in the crystal. At E = E,, 
the current grows sharply. As H grows, E,, increases too. 

Thus, amplification was imparted to an externally introduced sound flux and intrinsic 
phonons in semiconductors with both deformation and piezoelectric interactions 
between the electrons and phonons, as well as in the semimetal Bi in external electric 
and magnetic fields. It has been established that at H = 0 the cvc has a downward break 
(it is being saturated) [3], whereas in a magnetic field crossed with an electric one it 
exhibits an upward break [4]. 

Later, cvc of the type obtained in [3] for Bi were observed in InSb [5] as well as in 
Bil -,Sb, semiconductive alloys [6]. 
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Zylbersztejn [7] obtained generation of a high frequency in n-Ge and then also in n- 
InSb in a strong electric field. 

Thus, acoustic instability of semiconductors and semimetals was discovered in an 
external electric field. Shortly after, the phenomenological theory of acoustoelectronic 
phenomena was developed. The current saturation in piezoelectrics was explained by 
the appearance of an acoustoelectric current. Translated into the ‘microscopic (kinetic) 
language’, the acoustoelectric current is the drag current. 

Inasmuch as the lifetime of acoustic phonons decreases rapidly with temperature, 
their substantial non-equilibrium conditions are satisfied at low temperatures or under 
acoustic instability conditions at any temperatures. For acoustic phonons the frequency 
values of the phonon-electron relaxation are much less than those for optical phonons, 
and that is why for the noticeable influence of the non-equilibrium on the transport 
effects it is necessary to wait for microseconds [8,9]. Owing to the development of laser 
technology, in the last few years interest has grown again into the effects of phonon 
generation and amplification. In experiments involving excitation and probing by means 
of picosecond laser pulses intense amplification of the polar optical phonons was 
observed [8,9]. GaAs heterolayers with a two-dimensional electron gas exhibit par- 
ticularly favourable conditions in this respect [lo, 111. 

A consistent microscopic theory of cvc for semiconductors and semimetals in exter- 
nal electric and magnetic fields with due regard for possible generation of phonons by 
the drift of current carriers must be based on the solution of a bound system of kinetic 
equations for current carriers and phonons, taking into account both the heating of 
current carriers and phonons and their arbitrary (thermal and mutual) drags. In this 
case the Boltzmann equation for the phonons should be solved in a non-diffusion 
approximation. Such a problem was formulated and solved in [12] in a non-diffusion 
approximation for acoustic phonons and in [13] for optical phonons, too. The same 
reports have shown that the non-equilibrium of phonons due to their heating and 
generation alters the transport effects considerably, leading in particular to current 
saturation at H = 0 and to a cvc break with E i H fields in accordance with the results 
of experimental studies [3,4]. 

Kocevar [8] has considered the optical phonon non-equilibrium (generation) using 
a procedure similar to that employed in [12], and has made a number of simplifying 
assumptions: 

(i) In an alternating current field and under laser excitation a spatially uniform case 
of transfer was considered, in spite of the importance of taking into account the non- 
uniformity. 

(ii) The electron distribution function was considered to be shifted to the drift velocity 
(Maxwell function), Too high concentrations of current carriers are necessary to realise 
the assumption (ii). 

Proceeding to the statement of the problem posed, it should be noted that the 
traditional approximation of a small anisotropy of the phonon distribution function 
N , ( q )  e N,(q) ,  used in reports on this subject (the so-called ‘diffusion approximation’), 
is applicable to phonons at drift velocities U much less than the average sound velocity s 
in the crystal (see [12]). In the presence of the external electric and magnetic fields this 
condition is obviously not fulfilled. This violation shows up in a particularly severe way 
under acoustic instability conditions, when phonon generation or amplification by charge 
carriers starts [l, 71. Actually, as follows from the results of [12], both the symmetrical 
N,(q) and antisymmetrical N,(q) parts of the phonon distribution functions, as well 
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as the ratio N , ( q ) / N , ( q ) ,  increase with U ;  moreover Na/NS- 1 when U-s and 
(Na/Ns) & 1 when U & s. Besides, the solution of the Boltzmann equation for phonons 
N ( q )  is stationary for U < s and non-stationary for U > s. These results were obtained 
in [12] by solving the non-stationary transport equation for phonons without using a 
diffusion approximation in the absence of spatial non-uniformities (see Appendix). 

The present report deals with a theoretical investigation of thermopower and the 
transverse Nernst-Ettingshausen (NE) effect in impurity semiconductors and semimetals 
exposed to external electric and non-quantised magnetic fields when there is a tem- 
perature gradient V T  ( T  is the lattice temperature in terms of the energy units). The 
investigation is carried out in a non-diffusion approximation for acoustic phonons with 
due regard to the electron drag by phonons (the thermodrag) and their mutual drag. A 
similar problem was solved for both metals [ 141 and semiconductors [ 15,161 in a diffusion 
approximation. 

In order to reveal and correlate the net relative contributions of the effects of 
thermal and mutual drags to the thermomagnetic coefficients near the acoustic instability 
threshold, we do not consider here the possible heating of electrons and phonons by the 
electric field. 

In the case of an arbitrary drag of phonons and electrons the phonon part of the NE 
coefficient Qp differs from zero only for the non-parabolic spectrum of electrons [ 17, 181. 
That is why we consider the case of the Kane spectrum in the two-band approximation 
for the degenerate electron statistics 

and the simple energy-momentum dependence for the non-degenerate one 

P(E) = PESO. ( 2 )  
Here m, is the electron effective mass at the bottom of the conduction band, is the 
band gap, ,U = (2m,)'I2, so = h for the parabolic and ,U = ( 2 m , / ~ # ~ ,  so = 1 for the 
strongly non-quadratic spectra. 

In this paper general expressions for thermopower and NE coefficient are given for 
both the degenerate and the non-degenerate statistics of current carriers. In the case 
under consideration, when there is no heating of electrons and phonons, the depen- 
dences of thermopower and the NE coefficient on E and Hare  due to thermal and mutual 
drags, i.e. to the dependence of the phonon drift velocity U on E and H .  Since this 
dependence is the same for both non-degenerate and degenerate statistics, in order to 
shorten our paper we give the concrete dependences of the thermopower and NE 
coefficient upon E and H for degenerate statistics only. 

It is shown that the electron drag by phonons and their mutual drag in the absence 
of electron and phonon heating lead to a non-linear dependence of current on the E 
field ('non-heated non-linearity') and hence a dependence of thermopower and the NE 
coefficient of E and H .  

It should be noted, for comparison, that in a diffusion approximation the account of 
drag leads to the change of the dependences of thermopower and NE coefficient on the 
lattice temperature only. 

2. Fundamental equations and their solutions 

Since the mutual electron-phonon drag leads to a decrease of the electron drift velocity 
U( E ) ,  the condition U 4 uofor electrons is satisfied for all values of fields and temperatures 
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used, where uo = (2T/m)'i2 for the non-degenerate and uo = uF for the degenerate 
statistics, and uFis the Fermi velocity of electrons. Therefore for the electrons a diffusion 
approximation may be used: 

f(~) = f s  ( E )  + f a  ( E )  I f a  ( E )  I + f s  ( E ) *  (3 1 
Here f , ( ~ )  is the equilibrium Fermi distribution function with temperature T ,  and fa(&) 
is the antisymmetric part of the electron distribution function. In order to preserve 
the usual pattern of calculating the thermomagnetic effects, we divide the phonon 
distribution function N ( q )  into symmetric N s ( q )  and antisymmetric Na(q) parts: 

N ( q )  = . " r s ( q )  + s u ' a ( q ) .  (4) 
It should be noted that no restrictions are imposed on the relative quantities N s ( q )  and 

From Boltzmann transport equations for the electrons and phonons by using (1) and 
Jfa(q)* 

(4) we obtain 

where 

is the isotropic part of the phonon distribution function, 

ET is the thermomagnetic field, i o ( T )  is the chemical potential of electrons, P d  is 
frequency of phonon collision with the defects, the role of which is mainly played by the 
crystal boundaries, p(q) and V ( E ,  U )  = V & E ,  U) + vi(&) are the totalphonon andelectron 
momentum scattering rates due to some scattering centres, respectively, dQO = 2n sin y 
d y ,  y = (q,^u), q is the acoustic phonon momentum; the indices 'p' and 'i' mean the 
phonons and ionised impurities, Moreover according to [12] 

The deformation (DA) and piezoelectric (PA) interactions of electrons with acoustic 
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phonons are considered. In this case W ,  = Woq' with t = +1 for the DA and t = -1 
for the PA interactions. The solutions of the phonon equations have the form 

where N ( q ,  T )  is the Planck equilibrium function with temperature T.  
Having determined the current densityj with the aid of (5) and (7) and using the 

conditions j T ,  = 0, j T ,  = 0, and V,T = 0 (the latter condition corresponds to the iso- 
thermality in the x direction) for the geometry E 11 H 1 )  1 V T  11 Oz one can find the NE 
field E As for the thermoelectric field ET, ,  which is determined from the condition 
j T ,  = 0, we shall investiEte it only for the fields and temperature gradient geometries 
E I(HI( VTI( E a n d E  1 1  Oy I HI1 VTll 5. 

Let us present the frequencies of collisions of electrons V ( E )  and phonons p(q) with 
scattering centres in the form: 

V(&)= l@(1 +2:)(1 + ; ) - r ( ; ) - r  p(q) = p(T) (F)k ( l  + 2H) ' .  E g  (8) 

Here r is the electron momentum scattering parameter, and k = 0, 1, t when the long- 
wavelength (LW) phonons are scattered by the crystal boundaries, by the reservoir 
phonons and by the electrons, respectively. For the phonons being scattered by the 
electrons ( k  = t )  1 = 2 ,  while in other cases 1 = 0; E = T for non-degenerate and E = f 
for degenerate electrons; f is the Fermi energy. 

Since the electron part of the thermopower remains unchanged, we shall further 
study the phonon part of the integral thermopower Vp as well as the electronic Q, and 
phonon Qp parts of the NE coefficient. 

3. Thermopower 

If the phonons are mainly scattered by the electrons ( k  = t ) ,  then in a zero approximation 
on the degeneracy the phonon part of the thermopower has the form 

AT/3 , (T)s2  s v, = V @ d ( U )  = 8---(- e P(T)  u 2  2u q ( u )  - 1) (9) 

where AT = T(+O) - T(L , ) ,  L, being the linear dimension of the specimen in the z 
direction. 

From (9) it is seen that approaching the acoustic instability threshold ( U +  s) V,  is 
sharply increased because q ( u )  4 w when U 4 s. 
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3.1. The case E / lH I/ V T / / z  

If the electrons are scattered by the impurity ions (vi(&) % v , (E,  U)), then 

T M Gasymov and A A Katanov 

As follows from this expression, U = s when E = Ei and U < s when E 
E < Ei, expanding Q,(u) is a power series of (u/s), from (9) we have 

E,. In the fields 

VPi = VF[l + p(E/E1)2]. (11) 
It is seen that VpI increases with increasing E. 

In the region of moderate values of the phonon drift velocity when 0 < U < s/2 (the 
range of fields 0 < E < Ei satisfy this condition) with an accuracy to the logarithmic 
dependence on E the function q(u)  = const and we obtain 

Whenu-+s 

Vpi = $Vpoq(~).  (13) 
From (12) and (13) it is seen that in the range of moderate phonon drift velocities the 
thermopower decreases with increasing electric field as E-3, whereas just at the acoustic 
instability point it grow sharply at the expense of Q,(u). 

If the phonons and electrons are mainly scattered by eachother then in the immediate 
vicinity of the acoustic instability point (U -+ s) we obtain 

where Ppb = Pp + P b ,  Pp and P b  being the collision frequencies of LW phonons by the 
reservoir phonons and by the crystal boundaries on energy or momentum transfer, 
respectively. As follows from (14) in fields E % E ,  the quantity U = s = const. Then 

V, = #V,oq(~)  = $Vpo(E/Ep) @ Vpo. (15) 

In other words, V, grows with increasing electric field as E. From (14) it is also seen that 
when E = E, the phonon drift velocity is 

U = 0.46s = s/2. (16) 
This shows that the range of moderate phonon drift velocities has in fact an upper limit = 
s/2. When 0 < U < s/2 we find in a way similar to (12) that 

V, = a( E / E  , ) 3/2 Q, -'I2) ( E  , / E )  (17) 1/2 112 U==S(E,/E) Q, (U> 

i.e. in contrast to (12) in the case of mutual drag in the range of moderate phonon drift 
velocities with an accuracy of the factor q(u)  the thermopower V, grows with the field 
as E 3/2. 

In the case of E 4 E, we find from (9) that 

V, = Vpo[l + 2(Ep/E)2]. (18) 

Expressions (1 1), (14), (15) and (17) show that both the electron drag by phonons and 
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their mutual drag in the absence of electron heating lead to a non-linear dependence of 
the current on the electric field (non-heated non-linearity) and as a consequence to the 
increase of thermopower with the field E .  

3.2. The case of E l/q 1 H // V T / / E  

In a strong magnetic field in a zero approximation on scattering we have 

P e  cE 
P H  

(independent of the scattering mechanism). Then according to ( 9 ) ,  V ,  is of the form 

As seen from this expression, when U 4 s we have 

v, = vp~[1 -I- g(E/Ek)2] .  (20) 

In the range of moderate values of the drift velocity 0 < U < s/2,  i.e. when E < E k ,  we 
have 

vp - ( E k / E ) 3 Y 1 ( E / E k )  (21)  

i.e. with an accuracy of a logarithmic dependence, the thermopower decreases with 
increasing E and grows because of increasing q ( u )  when U + s. 

With E + E k ,  i.e. when U --., s, the thermopower is determined by the expression 

v, = W,Ocp(E/H) (22) 

and it is sharply increased because of growing q ( E / H ) .  
We also present the expression of Vp for non-degenerate electrons: 

where 

and I?( 111) is Euler's gamma function. 

other we get 
At E 11 H 11 VT in the case of scattering of the electrons and phonons mainly by each 

3s; r(4s0 - 1) m,v,(T)s P ( T )  
2l+'l2 r(l - s o t )  e P,(T) 

Ph Q2+'/2 E ,  = - 

whereas in the case of thermal drag we have 
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4. Transverse Nernst-Ettingshausen effect 

If 
field ET, : 

I /  E I/ H I VTll z, a transverse NE field E r, appears in addition to the thermal 

ET, + Qp)VzT. (23) 

In weak magnetic fields when C O ~  4 v( l;, U), in a second approximation on the degener- 
acy we find 

whereas in strong magnetic fields (oH S v ( f ,  U)) we have 

1 n2 1 v ( l ; , u )  (1 +2&)3 
Q =-- 

e eH 3 (1 + A ) '  OH (1 +a)'+' 
(25) 

Q =--- 1 32n2 v(l;, U) a (1  + 2a)2 
W ( q 2 A ( ~ ,  r )  eH 9 OH (1 +CY)'+' (1 + A ) '  P ( T )  f 

where a = f/.zg 

because of P/PP, % 1, whereas v(5) and wH are the values of the respective quantities 
in the parabolic case. 

From (24) and (25) it follows that when the electrons are scattered by the impurity 
ions (vi(s) S vp(l;, U)), Q, does not depend on E, while the phonon part Q p  depends on 
E as 6(E/Ei). But if the electrons are scattered by phonons, in weak magnetic fields 
Q, - (d(E/EP))-l, whereas Q p  is independent of E and H (i.e. Qp tends to a constant 
value). In contrast, in strong magnetic fields in the case of a mutual drag Q, - 6(u/s), 
whereas Qp - d2(u/s). From (24) and (25) it is also seen that in the case of electron 
scattering by piezoacoustic phonons ( r  = 4) both Q, and Q, reverse their signs with 
growing non-parabolicity parameters a. The critical value of a at which Q, and Qp 
become equal to zero is a,, = 0.215. 

Now we present the dependences of Q, and Q p  on E in specific cases (the depen- 
dences of these quantities on H remain the same as they are in the linear theory). 

4.1. The case of electron scattering by impurity ions (thermal drag) 

In this case the dependences of Qp on E are the same as those of V, on E, determined 
by the expressions (11) to (13). Consequently, in the case of the thermal drag Qp, by 
analogy with Vp, increases with increasing E in the region of small drift velocity values 
(U s) and near the acoustic instability threshold, and it decreases in the region of 
moderate phonon drift velocities (0 < u < s/2) in both weak and strong magnetic fields. 
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4.2. The case of mutual drag (k = t; Pp,/P 9 vi(C)/vp(C, U)) 

In a weak magnetic field 

Q c  = Q c o [ l  + %E/Ep)21-' if U 4 s  

Q, = ;Qeo(E,/E)312~1/2(Ep/E) if 0 < U < s/2 (26) 
Q c  = QeOQ)-'(U/s> ifu-*s 

and 

for the whole region of values of U. 

coefficient Q, - E,/E when U + s. 
From (26a) it is seen that Qp tends to saturation, whereas the electron part of the NE 

If the magnetic field is strong, then for U s 

(27) 
Q e = Q ep(Wb(u/s) = Q ep(H)[1 + %E/Ep)21 

Q p  = Q , , ( H ) S 2 ( ~ / ~ )  = Q,,(H)[1 + &E/Ep)21 
and for 0 < U < s/2 

and, finally, near the acoustic instability point (U + s) 

(29) 
Q e  = Qep(H)Y(u/s) - (E/Ep) 

Q ,  = Q, , (H)~p~(u / s )  - (E/Ep)2. 
From the results obtained one can see that in the case of electron scattering by phonons 
in a strong magnetic field both Q, and Q p  increase with increasing E in all regions of 
values of phonon drift velocities 0 < U 6 s. 

In conclusion we present the final expressions of Qe and Q p  for non-degenerate 
semiconductors. 

In weak magnetic fields 

where 
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whereas in strong magnetic fields 

where 

and r(x(q/2), q)  is the incomplete gamma function. It should be noted that the terms 
proportional to vP(u, T)/v(u, T )  are essential in (31) and (32) only in the case of mutual 
drag. 

The above expressions for Q p  show that in the case of a parabolic spectrum (a = 0 
or so = i) Q p  = 0 for both degenerate and non-degenerate charge carriers, which is in 
accordance with the results of other studies [17,18]. 

5. Discussion of results 

As follows from (11) to (13), in the case of E 11 H the thermopower caused by thermal 
drag grows with the electric field in the immediate vicinity of and far from the acoustic 
instability point and decreases with E in the region of moderate drift velocities. As for 
thermopower associated with mutual drag, it grows with E over the whole region of 
phonon drift velocities, as seen from (15) to (18). 

In a strong E i H magnetic field the thermopower grows near and far from the 
acoustic instability point, whereas in the region 0 < U < s it decreases with E and grows 
with H .  

According to (24) the electron part of the NE coefficient is independent of E ,  whereas 
Q p  depends on E ,  if the electrons are scattered by impurity ions. But in the case of 
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electron scattering by phonons in weak magnetic fields Q ,  - S-'(E/E,), whereas Q p  is 
independent of E and H ,  i.e. it is saturated. 

In a strong magnetic field Q ,  - S(u)  and Q p  - S2(E/E,), if the mutual drag of 
electrons and phonons is substantial. 

In the case of thermal drag Q p  - S(u), whereas Q ,  is saturated. When the electrons 
are scattered by piezoacoustic phonons (Y = i), Q ,  and Q p  reverse their signs and turn 
to zero at a certain critical value of the non-parabolicity parameter LY, according to (24) 
and (25). 

Let us evaluate the order of magnitude of the thermopower in the cases of thermal 
and mutual drags near the acoustic instability threshold. From (9) and (13) it is seen that 
when U--, s ( u  = s) 

and grows sharply with q(u) .  However, we shall show that q ( u )  has an upper limit. 
For this purpose we first assumed that the electrons have been heated, whereas the 
temperature of LW phonons coincides with the short-wavelength (sw) phonon reservoir 
temperature, as before. Then we have the following expression for the dimensionless 
electron temperature 8, = T,/T 

8, = 

Now, if one cools 
condition we find 

9 (U) 

For InSb with 

the electrons to the lattice temperature, then ee = 1. From this 

parameters m, = 3 x g, v i ( ( )  = 101'-10'2 s-' > . p ( O  = 
101o-lO1l s-', s = 3 x lo5 cm s-' and q = 103-104, the quantity Ei = 0.6 V cm-', if 
vi(() = 101's-'. With vi(() = 101*s-' the critical field Ei = 6 V  cm-'. It means that 
even at relatively small electric fields the phonon drift velocity is comparable with s. 
Substituting q ( u )  into (13), we obtain for AT = 77 K and U--, s that VPi = 1.77 X lo3 V, 
if q = lo3, vi/vp = 10. Now we evaluate Vp in the case of mutual drag. For InSb with 
the above parameters ( v p ( t )  = 10'l s-', q = lo3), E,, = V cm-' and even at E = 
1 V cm-' the quantity q ( u )  = lo3. Then, according to (15), we have Vp = $VpO(E/E,) = 
26.6 V. 

The NE EMF (or NE voltage) can be evaluated in a similar way: U,,, = HQ,,,ATL,/ 
L,, where L,  is the linear dimension of the specimen in the x direction. From (24) it is 
seen that in weak magnetic fields in the case of a thermal drag Q, tends to saturation, 
whereas when U-+ s the quantity U ,  = 0.6 V, if LY = 0.2, wH = 10" s-', vi(g)  = lo1' s-', 
L, = L,, (T / s )  = lo-' and q ( u )  = lo4. In strong magnetic fields we find from (25) near 
the acoustic instability threshold U ,  = 0.3 V when wH = lo'* s-l and vi(() = 10'' s-'. 

Thus, it follows from the foregoing that the thermal and mutual drags yield non- 
linear dependences of thermopower and NE coefficient on the electric field, which is 
revealed in a substantial growth of the absolute values of these quantities. In other 
words, the drags and non-heated non-linearity related to E and H (at E 1 H) always 
accompany each other. 
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The results of this investigation show that by measuring the thermopower and 
thermomagnetic coefficients near the acoustic instability point ( when the electrons and 
phonons are in a powerfully non-equilibrium state) it is possible to obtain EMF values 
exceeding by several orders the EMF values of equilibrium thermal sources. 

Appendix 

We present a short survey of the results and assumptions discussed in [12] and relating 
to the solution of the non-stationary Boltzmann equation for phonons interacting with 
electrons in strong electric and non-quantising magnetic fields. Consideration is given to 
the case of high concentrations of electrons, when the isotropic part of their distribution 
function is that of the Fermi (or Maxwell) type with an effective temperature T,. Besides, 
the case of a thermal reservoir of the sw phonons is discussed where the use of a one- 
particle (single-mode) relaxation time describing the thermalisation rate of an individual 
excited phonon and certainly including the effects of losses at the crystal boundaries 
(t i1 = ti; + t i i )  is well justified. Here P p  = ti; and P b  = ti; are the relaxation 
frequencies of the LW phonons at the reservoir phonons and at the crystal boundaries, 
respectively. The existence of a separate-mode relaxation time makes it possible to write 
the highly non-linear integral of phonon-phonon and phonon-boundary collisions in 
terms of relaxation frequencies as [8] 

(aN/at)p = -Pp(q)[N(q)  - Nq(Tp) l  - P b [ N ( q )  - N q ( T L ) l *  (All  
Here N ( q )  is the actual distribution of phonons, and Nq( Tp) and N9( TL) are the equi- 
librium Planck distributions with the temperature of heated phonons Tp and that of the 
lattice TL. In the presence of the thermal reservoir, Tp = TL. 

The collision integral between the phonons and carriers has the form 

(a" = E W,{N(q, t)[Fb + 4 )  - @)I 
P 

+ Fb + 4)P - ~ b ) I l q E p + ,  - E p  - no,>. (A21 

F(P) = F o ( E p )  +fb) where Ifbll + F o ( E p ) .  (A31 

We present the carrier distribution function as 

Here 
of carriers, whereas 

is the equilibrium Fermi distribution function with the effective temperature 

is the asymmetric part of the distribution function of electrons and V(E,,, t )  is their drift 
velocity with energies 

If we substitute (A3) and (A4) in (A2) and take into account the fact that 

P c  ;el = -E W q [ F O ( E p + q )  - FO(Ep)l'(Ep+q - ' p  - (A51 
P 

by definition, (A2) can be reduced to the form 

Here Nq( T,) is the equilibrium Planck distribution function with the temperature of 
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carriers Te. With the aid of (Al)  and (A6) the Boltzmann equation for phonons can be 
transformed to the following form: 

As distinct from [12], we ignored the scattering of phonons by defects when obtaining 
this expression. Having introduced the notation 

(Ti = Te, Tp or T ) ,  we can write the general solution of equation (A7) for the initial 
conditions X(q,  t )  = X(q,  0 )  at t = 0 as 

Here 

is the average drift velocity of phonons interacting with electrons. 
If the external electric field is constant (i.e. o + 0), then (A9) can be written as 

According to (AlO), for (uq) < hw, the distribution of phonons is stationary. In fact, in 
this case from (A9) or (A10) we obtain 

For (uq) > no, the function N ( q ,  t )  is increasing in time, with the amplification coef- 
ficient 

yq =;(e - 1) 

If along with the intrinsic phonons of the crystal Nq( T )  the initial phonon distribution 
includes externally introduced phonons X,,(q), the latter are also amplified with the 
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amplificationcoefficient (A12). In fact, ifthereis afluxofexternallyintroducedphonons, 
then equation (A7) can be written as 

By a simple substitution t' = t and r' = r - u(q ) t ' ,  equation (A13) is reduced to (A7). 
The solution of (A13) is as follows: 

If the specimen is considered to be spatially uniform, it is natural to suppose that the 
initial distribution of phonons is also uniform. Then from (A14) it follows that the 
distribution will remain uniform during subsequent moments of time t ,  too, i.e. 

N(4'  r - u(q)t ,  0) = N ( q ,  0) (A13 

and (A14) coincides with (A9). Solving (A7) directly under the conditions W ( q ,  t) /at  = 
0 can also give a stationary solution 

coinciding with (All) .  
For further calculations it is more convenient to divide the function N ( q )  into a 

symmetric N,(q) and antisymmetric Na(q) part. For this purpose we multiply and divide 
(A16) by [ l  + (uq)/ho,], which gives 

N(q) e Ns(q) + N a ( q )  

As seen from this formula, a small anisotropy approximation of the phonon distribution 
function Na(q) < N , ( q )  (the so-called 'diffusion approximation') is applicable when the 
phonon drift velocity is much less than the average sound velocity s in the crystal. 
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